Subsets of Salivary Duct Carcinoma Defined by Morphologic Evidence of Pleomorphic Adenoma, PLAG1 or HMGA2 Rearrangements, and Common Genetic Alterations

Simion I. Chiosea, MD1; Lester D. R. Thompson, MD2; Ilan Weinreb, MD3; Julie E. Bauman, MD4; Alyssa M. Mahaffey, BS1; Caitlyn Miller, BS5; Robert L. Ferris, MD, PhD5; and William E. Gooding, MS6

BACKGROUND: The authors hypothesized that histogenetic classification of salivary duct carcinoma (SDC) could account for de novo tumors and those with morphologic or molecular evidence (pleomorphic adenoma gene 1 [PLAG1], high-mobility group AT hook 2 [HMGA2] rearrangement, amplification) of pleomorphic adenoma (PA). METHODS: SDCs (n = 66) were reviewed for morphologic evidence of PA. PLAG1 and HMGA2 alterations were detected by fluorescence in situ hybridization (FISH). PLAG1-positive tumors were tested by FISH for fibroblast growth factor receptor 1 (FGFR1) rearrangement. Thirty-nine tumors were analyzed using a commercial panel for mutations and copy number variations in 50 cancer-related genes. RESULTS: On the basis of combined morphologic and molecular evidence of PA, 4 subsets of SDC emerged: 1) carcinomas with morphologic evidence of PA but intact PLAG1 and HMGA2 (n = 22); 2) carcinomas with PLAG1 alteration (n = 18) or 3) HMGA2 alteration (n = 12); and 4) de novo carcinomas, without morphologic or molecular evidence of PA (n = 14). The median disease-free survival was 37 months (95% confidence interval, 28.4-45.6 months). Disease-free survival and other clinicopathologic parameters did not differ for the subsets defined above. Combined Harvey rat sarcoma viral oncogene homolog/phosphatidylinositol-4,5-biphosphate 3-kinase, catalytic subunit α (HRAS/PIK3CA) mutations were observed predominantly in de novo carcinomas (5 of 8 vs 2 of 31 tumors; P = .035). Erb-B2 receptor tyrosine kinase 2 (ERBB2) copy number gain was not observed in de novo carcinomas (0 of 8 vs 12 of 31 tumors; P = .08). Tumor protein 53 (TP53) mutations were more common in SDC ex pleomorphic adenomas than in de novo carcinomas (17 of 31 vs 8 of 8 tumors; P = .033). CONCLUSIONS: The genetic profile of SDC varies with the absence or presence of pre-existing PA and its cyogenetic signature. Most de novo SDCs harbor combined HRAS/PIK3CA mutations and no ERBB2 amplification. Cancer 2016;000:000–000. © 2016 American Cancer Society.

KEYWORDS: malignant transformation, next-generation sequencing, pleomorphic adenoma, salivary, salivary duct carcinoma.

INTRODUCTION

Salivary duct carcinoma (SDC) is one of the most aggressive salivary malignancies and most patients present with advanced disease.1-5 The current management of patients with SDC includes surgical resection followed by radiotherapy and/or chemotherapy. With conventional therapy, more than one-half of patients with SDC die of disease in 3 to 5 years.4,5

SDC is the most common histologic type of carcinoma ex pleomorphic adenoma (ex-PA), and at least one-half of SDCs arise from pleomorphic adenoma (PA).6-9 PA was the first benign human epithelial neoplasm to be shown to harbor recurrent cytogenetic abnormalities involving pleomorphic adenoma gene 1 (PLAG1) and high-mobility group A2 (HMGA2).10,11 Several cytogenetically defined subsets of PA have been recognized, including those with PLAG1 or HMGA2 rearrangements, other rearrangements, and cytogenetically intact PA. Comparable cytogenetic abnormalities were reported in SDC7,12,13 as a reflection of PA diversity.

Currently used targeted therapeutic modalities, including anti-erb-B2 receptor tyrosine kinase 2 (anti-ERBB2) approaches, androgen-deprivation therapy, and vemurafenib, are characterized by variable clinical benefits.14-17 Recently,
additional potentially targetable genetic abnormalities in SDC were identified, including mutations of the gene encoding the p110α catalytic subunit of phosphoinositide 3-kinase (PIK3CA), either alone or combined with Harvey rat sarcoma viral oncogene homolog (HRAS) mutations.14,18-20

The objective of this study was, first, to correlate PLAG1 and HMGA2 alterations with clinicopathologic features in a large cohort of patients with SDC. For instance, determining the frequency of PLAG1 and HMGA2 rearrangements in SDC may help to better understand its origin (de novo vs ex-PA). By the time of clinical presentation, SDC may overrun the remaining evidence of pre-existing PA. Practically, PLAG1 and HMGA2 alterations may help to distinguish salivary and nonsalivary high-grade adenocarcinomas on small biopsies, especially those with an occult primary.

Second, to describe genetic events that may be associated with malignant transformation of PA into SDC, we wanted to characterize the relation between the presence of pre-existing PA (as determined by a combination of morphology and PLAG1 and HMGA2 status) and mutations and copy number variations in 50 cancer-related genes.

MATERIALS AND METHODS

Patients and Histologic Review

This study was approved by our institutional review board (IRB991206). Patients whose samples satisfied the following eligibility criteria were included: surgical resection of primary SDC; sufficient formalin-fixed, paraffin-embedded material for primary SDC; sufficient formalin-fixed, paraffin-embedded material for small ductal elements and hyalinized hypocellular nodules were accepted as histologic evidence of pre-existing PA.

Immunohistochemistry

Immunohistochemistry (IHC) for tumor protein 53 (p53) (DO-7 monoclonal mouse, 1:100 dilution; Dako, Carpinteria, Calif) was performed according to the manufacturer’s recommendations. IHC for p53 was interpreted according to the methods described by Boyle et al.19,22

FISH

PLAG1 and HMGA2 rearrangements were detected using break-apart FISH probes (Empire Genomics, Buffalo, NY). From 60 to 100 cells per tumor were analyzed using the Leica Biosystems FISH Imaging System (CytoVision FISH Capture and Analysis Workstation, Buffalo Grove, Ill). Hyperploidy or amplification (centromeric enumeration probes were not used) was defined as the presence of >2 PLAG1 or HMGA2 signals in >75% of cells. The PLAG1 and HMGA2 rearrangement status of 27 tumors was previously determined and reported.7 Fibroblast growth factor receptor 1 (FGFRI) FISH was performed as previously described.23

Library Preparation, Sequencing, and Data Analysis

DNA extraction and targeted next-generation sequencing analysis were performed as previously described.19 Library concentrations and amplicon sizes were determined using the TapeStation System (Agilent Technologies, Santa Clara, Calif). Subsequently, the multiplexed, barcoded libraries were enriched by clonal amplification using emulsion polymerase chain reaction on templated Ion Sphere Particles and loaded on an Ion 318 Chip. Massively parallel sequencing was carried out on a Ion Torrent Personal Genome Machine sequencer (Life Technologies, Carlsbad, Calif) using the Ion Personal Genome Machine Sequencing 200 Kit version 2 according to the manufacturer’s instructions. After a successful sequencing reaction, the raw signal data were analyzed using the Ion Torrent platform-optimized Torrent Suite version 4.0.2 (Life Technologies). The short sequence reads were aligned to the human genome reference sequence (GRCh37/hg19). Variant calling was performed using the Variant Caller version 4.0 plugin (integrated with Torrent Suite), which generated a list of detected sequence variations in a variant calling file (VCF v4.1; available at http://www.1000genomes.org/wiki/analysis/variant percent20-call percent20format/vcf-variant-call-format-version-41; accessed September 1, 2015). The variant calls were annotated, filtered, and prioritized using SeqReporter,24 an in-house knowledge base, and the following publically available databases; COSMIC v68 (http://cancer.sanger.ac.uk/cancergenome/projects/cosmic/; accessed September 1, 2015), dbSNP build 137 (http://www.ncbi.nlm.nih.gov/SNP; accessed September 1, 2015), in silico prediction scores (polymorphism phenotyping 2 [PolyPhen-2] and sorting intolerant from tolerant [SIFT]) from dbNSFP light version 1.3.25 Sequence variants with at least 300× depth of coverage and a mutant allele frequency of >5%
of the total reads were included for analysis. Copy number variations were identified by next-generation sequencing as previously described.26 ERBB2 gain was defined as \(>8\) copies, and cyclin-dependent kinase inhibitor 2A (CDKN2A) loss was defined as \(<0.5\) copies.

Statistical Analysis

The SDC 4 subgroups were compared using an exact (permutation based) 2-tailed chi-square test. \(P\) values were adjusted using the method of Benjamini and Hochberg.27 Demographic and clinical comparisons between SDC groups were conducted using the Wilcoxon test for continuous data and the Fisher exact test or chi-square test for discrete data. DFS survival was compared between Pittsburgh/Southern California Permanente Medical Group and Toronto cohorts using a log-rank test.

RESULTS

The clinicopathologic parameters of 66 patients with SDC are summarized in Table 1 and Supporting Table 1 (see online Supporting Information). Eighty percent of patients were males, and most patients presented with clinical stage IV disease arising in the parotid gland. In 3 patients, unremarkable PA was resected 10, 31, and 33 years before the diagnosis of SDC. The estimated median DFS was 37 months (95% confidence interval, 28.4-45.6 months).

None of the demographic or clinicopathologic parameters of interest (sex, age, tumor site, pathologic or clinical stage, p53 by immunohistochemistry) differed by origin of SDC (de novo vs ex-PA, as defined by morphology), and none were associated with DFS (\(P = .37\)). DFS was comparable among patients diagnosed at different institutions (\(P = .49\)).

Four Subsets of SDC Defined by the Morphologic Evidence of PA and PLAG1 or HMGA2

Of 39 SDCs, 13 had PLAG1 alterations, including 7 with rearrangement only (Fig. 1A,B), 4 had rearrangement and hyperploidy, and 2 had hyperploidy only. Five were characterized by HMGA2 rearrangement, including 4 with rearrangement only (Fig. 1C,D) and 1 with rearrangement and hyperploidy.

On the basis of the morphologic evidence of PA and PLAG1 and HMGA2 status, SDCs can be categorized into 4 subsets (Fig. 2), including 27 cases with previously reported PLAG1 and HMGA2 alteration status.7 Overall, based on morphologic appearance and PLAG1 and HMGA2 status, 52 of 66 SDC (78%) in the current study arose ex-PA.

<p>| TABLE 1. Demographic and Clinicopathologic Features of Patients with Salivary Duct Carcinoma (n = 66) |</p>
<table>
<thead>
<tr>
<th>Clinicopathologic Feature</th>
<th>No. of Patients/Total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinicopathologic Feature</td>
<td>No. of Patients/Total (%)</td>
</tr>
<tr>
<td>Men</td>
<td>53/66 (80)</td>
</tr>
<tr>
<td>Age: Mean [range], y</td>
<td>66 [33-81]</td>
</tr>
<tr>
<td>Site</td>
<td></td>
</tr>
<tr>
<td>Parotid</td>
<td>58 (88)</td>
</tr>
<tr>
<td>Submandibular</td>
<td>8 (12)</td>
</tr>
<tr>
<td>Tumor size: Mean [range], cm</td>
<td>3.4 [0.8-7.2]</td>
</tr>
<tr>
<td>Origin</td>
<td></td>
</tr>
<tr>
<td>De novo</td>
<td>20 (30)</td>
</tr>
<tr>
<td>Ex-PA</td>
<td>46 (70)</td>
</tr>
<tr>
<td>Pathologic tumor classification</td>
<td></td>
</tr>
<tr>
<td>pT1</td>
<td>9 (14)</td>
</tr>
<tr>
<td>pT2</td>
<td>12 (18)</td>
</tr>
<tr>
<td>pT3</td>
<td>22 (33)</td>
</tr>
<tr>
<td>pT4</td>
<td>23 (35)</td>
</tr>
<tr>
<td>Pathologic lymph node classificationa</td>
<td></td>
</tr>
<tr>
<td>pN0</td>
<td>6 (9)</td>
</tr>
<tr>
<td>pN1</td>
<td>10 (15)</td>
</tr>
<tr>
<td>pN2</td>
<td>46 (70)</td>
</tr>
<tr>
<td>p53 IHC</td>
<td></td>
</tr>
<tr>
<td>Extreme positive</td>
<td>20 (30)</td>
</tr>
<tr>
<td>Extreme negative</td>
<td>14 (21)</td>
</tr>
<tr>
<td>Normal</td>
<td>32 (48)</td>
</tr>
<tr>
<td>PLAG1 positiveb</td>
<td>18 (27)</td>
</tr>
<tr>
<td>HMGA2 positive</td>
<td>12 (18)</td>
</tr>
</tbody>
</table>

Abbreviations: Ex-PA, ex pleomorphic adenoma; HMGA2, high-mobility group AT hook 2; IHC, immunohistochemistry; PA, pleomorphic adenoma; PLAG1, pleomorphic adenoma gene 1.

aOrigin based on morphologic evaluation.

bPathologic lymph node status was unknown for 4 patients.

The list of potential PLAG1 fusion partners includes FGFR1.11 Therefore, 13 SDCs with PLAG1 alterations were tested for FGFR1 rearrangement. One tumor with an FGFR1 rearrangement was identified (tumor 8) (Fig. 3), suggesting that, in this tumor, FGFR1 was the fusion partner of PLAG1. In tumor 2, FGFR1 FISH failed. In the remaining 11 tumors with PLAG1 alteration, FGFR1 was intact. Patients’ DFS, sex, age, tumor site and size, pathologic tumor classification, pathologic lymph node classification, and clinical stage did not correlate with the 4 SDC subsets.

Correlations Between the 4 Subsets of SDC and Genetic Alterations in 50 Cancer-Related Genes

Correlations between the 4 SDC subsets and mutations and copy number variations of PIK3CA, HRAS, ERBB2, v-Raf murine sarcoma viral oncogene homolog B (BRAF), FGFR3, TP53, CDKN2A, phosphatase and tensin homolog (PTEN), and ataxia telangiectasia mutated serine/threonine kinase (ATM) are illustrated in Figure 3.

The following genes were negative for mutations and copy number alterations: ABL proto-oncogene 1
nonreceptor tyrosine kinase (ABL1); AKT serine/threonine kinase 1 (AKT1); anaplastic lymphoma receptor tyrosine kinase (ALK); adenomatosis polyposis coli (APC); cadherin 1 (CDH1); colony-stimulating factor 1 receptor (CSF1R); catenin β1 (CTNNB1); epidermal growth factor receptor (EGFR); erb-b2 receptor tyrosine kinase 4 (ERBB4); enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2); FGFR1, FGFR2, F-box and WD repeat domain containing 7 (FBXW7); fms-related tyrosine kinase 3 (FLT3); G protein subunit α11 (GNA11); GNAS complex locus (GNAS); G protein subunit αq (GNAQ); HNF1 homeobox A (HNF1A); isocitrate dehydrogenase 1 (IDH1); IDH2; Janus kinase 2 (JAK2); JAK3; kinase insert domain receptor (KDR); Kirsten rat sarcoma proto-oncogene GTPase (KRAS); MET proto-oncogene receptor tyrosine kinase (MET); mut-L homolog 1 (MLH1); myeloproliferative leukemia virus proto-oncogene, thrombopoietin receptor (MPL); neuroblastoma RAS viral oncogene homolog (NRAS); notch 1 (NOTCH1); nucleophosmin 1 (NPM1); platelet-derived growth factor receptor α (PDGFRA); protein tyrosine phosphatase, nonreceptor type 11 (PTPN11); retinoblastoma transcriptional corepressor (RB1); ret proto-oncogene (RET);
SMAD family member 4 (SMAD4), SWI/SNF related, matrix associated, regulator of chromatin, subfamily b, member 1 (SMARCB1); smoothened, frizzled class receptor (SMO); SRC proto-oncogene, non-receptor tyrosine kinase (SRC); serine/threonine kinase 11 (STK11); and von Hippel-Lindau tumor suppressor (VHL). The coverage of some hotspots for the following genes was below the laboratory cutoff of 300 reads, which is of insufficient quality to make an accurate call:

TP53 (n = 4), HRAS (n = 1), EGFR (n = 3), APC (n = 3), and p16 (n = 16).

TP53 Mutations Occurred Predominantly in SDC Ex-PA

TP53 mutations were the most common genetic abnormality (18 of 39 tumors; 46%). TP53 mutation details and the results of p53 immunohistochemistry are summarized in Supporting Table 2 (see online supporting information). All TP53 mutations were in exons 4 through 8. TP53 mutations were more common in SDC ex-PA than in de novo carcinoma (17 of 31 vs 1 of 8 tumors; P = .033). For instance, 9 of 13 tumors (69%) with PLAG1 rearrangements and 4 of 5 (80%) with HMGA2 rearrangements harbored TP53 mutations.

ERBB2 Copy Number Gain Occurred Predominantly in SDC Ex-PA

In this study, ERBB2 copy number gain was not observed in de novo SDC (0 of 8 vs 12 of 31 tumors; P ≤ .08; when de novo status was defined by morphology and PLAG1 and HMGA2 status). ERBB2 copy number gain was observed in SDC de novo tumors when de novo status was defined by morphology alone (2 of 13 vs 10 of 26 tumors; P = .5).

Combined HRAS/PIK3CA Mutations With Higher Mutant Allelic Frequency of HRAS Were Observed Predominantly in de Novo Salivary Duct Carcinoma

PIK3CA exon 9 (p.E542K [n = 4] and p.E545K [n = 3]) or exon 20 (p.H1047R, n = 7) mutations were identified in 14 of 39 SDCs (36%). HRAS mutations were identified in 13 of 38 successfully tested SDCs (32%), including p.Q61R (n = 8), p.Q61K (n = 2), p.G13R (n = 1), p.G13V (n = 1), and p.T20I (n = 1). In addition to tumors that had isolated PIK3CA or HRAS mutations, 9 revealed co-occurring mutations in these 2 genes. None of the tumors with the combination of PIK3CA and HRAS mutations carried PLAG1 or HMGA2 rearrangements. Unsupervised clustering revealed that combined HRAS/PIK3CA mutations with mutant allelic frequencies higher in HRAS than in PIK3CA were observed predominantly in de novo SDCs (5 of 8 vs 2 of 31 tumors; P = .035).

Other Mutations

Two tumors harbored BRAF mutations: p.V600E and p.G466V (tumor 15) (Fig. 3). Two tumors had ATM mutations: p.V410A (tumor 6) and p.F858L (tumor 28). An FGFR3 p.F384L mutation was identified in 1 tumor (tumor 29).
DISCUSSION
Various salivary gland carcinomas arise from PA (eg, epithelial-myoepithelial carcinoma, myoepithelial carcinoma, SDC). The true prevalence of malignant transformation of PA into carcinoma is best assessed according to the specific histologic type of salivary carcinoma. On the basis of morphologic evidence alone, in the current multi-institutional series, 46 of 66 SDCs (70%) were ex-PAs. This is higher than the previously reported rate. This discrepancy is perhaps best explained by referral bias and a more extensive sampling of tumors included in the current study: the need for abundant material and exclusion of samples with a failed next-generation sequencing library may have inadvertently led to the inclusion of more recently diagnosed cases. Over the last few years, we tended to examine salivary tumors microscopically in their entirety. This may have enriched the current series for more extensively sampled cases. Anecdotally, it was previously demonstrated that, to identify pre-existing PA, up to 100 tissue blocks might have to be examined.

When morphologic evidence of PA is complemented by the knowledge of PLAG1 and HMGA2 status, additional cases of SDC ex-PA are identified. The overall prevalence of SDC ex-PAs in this series was 79% (52 of 66 tumors). Studying SDCs with molecular evidence of PA may help to refine our understanding of morphologic signs of pre-existing PA. For instance, before the knowledge was available about HMGA2 rearrangement in 1 of the tumors (Fig. 1C), a 0.1-cm hyalinized nodule devoid of bland ducts was not considered sufficient evidence for a pre-existing PA.

Previously, a cytogenetic study characterized basic clinicopathologic features of 220 PAs with PLAG1 and HMGA2 rearrangements. Although the technical performance of conventional cytogenetics may be distinct from that of FISH, it is tempting to compare the age of patients with PAs and SDCs harboring PLAG1 or HMGA2 alterations (Table 2). The reported average age of patients with PLAG1-positive PA was 39 years, whereas the average age of patients with PLAG1-positive SDC in the current study was 61 years. This difference in patients’ average age suggests that it may take 22 years for a PLAG1-positive PA to transform into an SDC. Perhaps a better understanding of genetic alterations leading to malignant transformation of PAs may lead to the earlier identification of “high-risk” PAs. The prevalence of PLAG1 and HMGA2 alterations is similar in PAs and SDCs (Table 2), suggesting that neither PLAG1 nor HMGA2 alteration predisposes a PA to malignant transformation.

One of the technical limitations of this study is its reliance on FISH, which is unlikely to identify intrachromosomal rearrangements. Also, break-apart probe designs preclude the identification of specific PLAG1 or HMGA2 fusion partners. For instance, the list of potential PLAG1 fusion partners includes CTNNB1 (β-catenin), leukemia-inhibitory factor receptor, transcription elongation factor A, coiled-coil-helix domain containing 7, and FGFR1. One tumor with a likely PLAG1-FGFR1 fusion was identified in this study. On the basis of the prevalence of TP53 mutations and ERBB2 copy number gain, there may be at least 2 more subgroups of SDCs with PLAG1 rearrangement: those with TP53 mutation only and those with TP53 mutation and ERBB2 amplification. Perhaps specific PLAG1 fusion partners (other than FGFR1) are associated with one of the above combinations of genetic abnormalities. Even when the status of PLAG1 and HMGA2 is accounted for, the genetic landscape of SDC remains very complex, with overlapping genetic alterations. Considering that most patients with SDC present with disease at an advanced clinical stage, the lack of a correlation between molecular findings and DFS is not surprising.

ERBB2 copy number gain and TP53 have been associated with malignant transformation of PAs. The findings of this study appear to reconcile some of the prior seemingly discrepant reports on the role of TP53 in malignant transformation of adenomas. TP53 abnormalities were associated with malignant transformation of PAs in some but not all studies. Here, we have demonstrated that TP53 mutations are more common in SDCs with PLAG1 or HMGA2 alterations. It is plausible that studies that did not identify an association between TP53 abnormalities and carcinoma ex-PA inadvertently focused on carcinomas arising in PAs with intact PLAG1 and HMGA2. Studies of salivary duct carcinomas de novo would have identified few, if any, cases with ERBB2 amplification or TP53 mutation.

One of the most distinct characteristics of de novo SDC is coexisting mutations in HRAS and PIK3CA. PIK3CA is one of the most studied effectors of HRAS. For instance, HRAS/PIK3CA cooperation is crucial to HRAS-induced skin cancer formation. In other solid tumors, PIK3CA mutations are believed to occur in invasive tumors, whereas upstream mutations in RAS genes occur at comparable rates at early and late stages, suggesting that PIK3CA mutation is a later event that may boost earlier activation of the PI3K pathway. In human mammary epithelial cells, the addition of PIK3CA p.H1047R greatly increased the anchorage-independent growth of an HRAS
The presence of HRAS mutations at higher allelic frequency is consistent with HRAS mutation being the earlier event: the presence of mutant allele in clinical tumor samples at a frequency >50% is consistent with mutant allele-specific imbalance. Practically speaking, the complexity of the genetic landscape of SDC confounds implementation of targeted therapy. Potential therapeutic approaches are summarized in Table 3.47,48

In conclusion, the profile of mutational findings and copy number alterations vary with morphologic evidence of PA and PLAG1 or HMGA2 status. PLAG1-positive and HMGA2-positive tumors tend to have TP53 mutations or ERBB2 copy number gain, whereas de novo SDCs frequently harbor HRAS and PIK3CA mutations. These findings elucidate the process of malignant transformation of PA into an SDC and provide a list of potential predictive biomarkers for the investigation of (dual) targeted therapies.

FUNDING SUPPORT

This project used the Head and Neck Specialized Program of Research Excellence (SPORE) and the University of Pittsburgh Cancer Institute Biostatistics Facility, which is supported in part by award P30CA047904 from the National Institutes of Health.

CONFLICT OF INTEREST DISCLOSURES

The authors made no disclosures.

AUTHOR CONTRIBUTIONS

Simion I. Chiosea: Conceptualization, visualization, design, acquisition of data, provision of study materials, interpretation of data, formal analysis, writing—original draft, writing—critical revision, final approval of the version to be published, supervision, agreement to be accountable for all aspects of the work, and funding.
REFERENCES