Mors.

evaluating the clinicopathological aspects of these tumors. With no large series presented in the English literature, it appears to yield the best clinical outcome. Key Words: Mesenchymal chondrosarcoma, sinonasal tract, nasal cavity, prognosis, differential diagnosis. Laryngoscope, 113:783–790, 2003

INTRODUCTION

Mesenchymal chondrosarcoma (MC) is a rare, malignant cartilaginous tumor first described in 1959 by Lichtenstein and Bernstein. Mesenchymal chondrosarcoma is a subtype of chondrosarcoma, accounting for up to 8% of all chondrosarcomas (irrespective of location). It has been described as a particularly aggressive neoplasm in skeletal locations with a high tendency for late recurrence and delayed distant metastasis. To the best of our knowledge, a comprehensive, clinicopathological evaluation of MCSNT has not been reported. Therefore, it is the intention of the current study to present the clinical features, histological findings, and follow-up information of 13 patients with MCSNT in comparison with those reported in the literature, in an effort to enhance the understanding of this neoplasm.

MATERIALS AND METHODS

The records of 57 patients with head and neck tumors diagnosed as “mesenchymal chondrosarcoma” were identified in the files of the Otolaryngologic–Head and Neck Registry of the Armed Forces Institute of Pathology (AFIP) from 1970 to 1995. However, 40 cases were excluded from further consideration because they involved the orbit, mandible, neck, or scalp. We included only cases primarily involving the nasal cavity and paranasal sinuses (sphenoid, maxillary, ethmoid, and frontal sinuses). Furthermore, an additional four cases were excluded because the small size of the biopsy specimen yielded only a single slide for analysis. Therefore, the remaining 13 patients make up the subject of this study, chosen from a review of 19,742 (0.07%) benign or malignant primary sinonasal tract tumors seen in consultation during this time period. The cases were obtained from civilian sources, including two foreign countries. Two patients included in...
the present review have been previously reported by other authors, but additional clinical and follow-up information was obtained, so they are included in the current study.

Materials within the files of the AFIP were supplemented by a review of the patient demographics (gender, age, and ethnicity), signs and symptoms at clinical presentation (including duration), and predisposing factors (including prior irradiation). In addition, we reviewed surgical pathological and operative reports and obtained follow-up information from oncology data services by written questionnaires or direct communication with the treating physician or the patient. Follow-up data included exact tumor location, tumor size, treatment modalities, and current patient and disease status. The present clinical investigation was conducted in accordance and compliance with all statutes, directives, and guidelines of the Code of Federal Regulations, Title 45, Part 46, and the Department of Defense Directive 3216.2 relating to human subjects in research. Hematoxylin and eosin (H&E)–stained slides from all patients were reviewed for morphological assessment of MC, with histological confirmation of the original AFIP diagnosis by a consensus agreement of all the authors. Five- and 10-year disease-free survivals were calculated based on the presence or absence of disease at each interval. Because of the limited number of cases, no statistical model was deemed satisfactory to yield meaningful results.

Our review of primary MCSNT in the English literature was based on a MEDLINE search from 1966 to 2002, with a few earlier reports included because of the rarity of the neoplasm (Table I). Reports describing MC in general were analyzed for comparison, although many cases have been reported a number of times from the same institution.

RESULTS

Sociodemographic Characteristics and Clinical Findings

The patients included 4 men and 9 women ranging in age from 11 to 83 years (mean age, 38.8 y; median age, 29 y [Table II]). There was no difference in the mean or median age at presentation between the genders. All of the patients were Caucasian. The patients complained of nasal obstruction (n = 8 [62%]), epistaxis (n = 7 [54%]), and/or mass effect (n = 4 [31%]). Other symptoms included pain, nasal discharge, headache, and facial asymmetry. Symptoms were experienced during a period ranging from 2 weeks to 2 years (mean period, 7.8 mo). No patient in the present clinical series had a history of prior radiation exposure, either therapeutic or environmental. Furthermore, no patient had a syndrome-associated chondrosarcoma.

Radiographic Studies

Radiographic studies were performed for the majority of patients in the present review, although the actual films may have been returned to the contributing hospital before the current study, allowing for only a review of the radiology report or radiological facsimile copy. Most patients (especially in the cases before 1980) had plain x-ray films, whereas advanced imaging techniques, such as computerized tomography (CT) scans or magnetic resonance imaging (MRI) studies, or both, were added to the workup in most patients after 1980. In general, a mass lesion of variable density (compared with adjacent muscle) was identified replacing the sinuses and/or nasal cavity, demonstrating fine, punctate stippled to coarse ("pop-

![Fig. 1. A coronal computed tomography scan shows complete opacification of the maxillary sinus by the mesenchymal chondrosarcoma with bony destruction. Tumor calcifications are easily demonstrated.](image)
corn”) calcification within the tumor (Fig. 1). Nearly all of the tumors were noted to have some form of calcification. Tumors were ill-defined with an expansile radiolucent mass invading into and destroying the bone of the nasal cavity and sinuses. Extension into the surrounding sinuses, orbit, and skull was frequently demonstrated. When a mucosal surface was obvious, it was intact.

Pathological Features

Macroscopic findings. The most frequently involved site was the maxillary sinus (n = 9), followed by the ethmoid sinuses (n = 7) and the nasal cavity (n = 5). The tumors invaded the surrounding bone to involve the orbit (n = 2), cribriform plate (n = 2), dura and middle fossa (n = 2), or palate (n = 1). The tumors were centered on the left (n = 5) or right (n = 4) side; the laterality was unknown in four patients. The tumors were large and ranged in size from 3.2 to 9.0 cm (mean value, 5.1 cm; median value, 4.5 cm). The majority of tumors were received as specimens following total surgical excision and were described as irregular blue-gray to reddish-tan fragments of mucosa covered tissue, with focal areas of hemorrhage and clot.

Microscopic findings. Bone invasion by neoplastic chondrocytes or undifferentiated mesenchymal cells was identified in all tumors with sufficiently large biopsy specimens (Fig. 2). The neoplastic cells were variously arranged in sheet-like patterns and organized around open vascular spaces in a pattern reminiscent of sinonasal-type hemangiopericytoma (Fig. 3). Other patterns included a nested ("alveolar") architecture and solid pattern (Fig. 4). All of the tumors revealed more than one pattern with the

Fig. 2. Normal haversian bone is invaded by chondrosarcoma that imperceptibly blends with areas of undifferentiated mesenchymal cells (lower right).

Fig. 3. Small cells with scant cytoplasm arranged in a hemangiopericytoma-like pattern around patulous vascular channels.

Fig. 4. The more typical mesenchymal chondrosarcoma with the cells arranged in a packaged or nested pattern (left), with an accentuation of the intercellular borders and an “eosinophilic” tinge in the stroma (upper right) and a hint of basophilic matrix material (lower right).

Fig. 5. The chondroid matrix shows the lacunar spaces filled with the same nuclei as identified in the mesenchymal component. Vague lacunar spaces are seen around the undifferentiated mesenchymal cells, which display coarse nuclear chromatin in irregularly shaped nuclei.
transition between these patterns being abrupt and discrete in some regions and gradual in others. All tumors, to a variable degree, demonstrated the typical bimorphic pattern of MC, with richly cellular, undifferentiated, small mesenchymal cells intermixed with islands of relatively well-differentiated and comparatively benign-appearing cartilage (Fig. 5). The chondroid element varied from virtually indistinguishable foci to large masses of well-defined cartilage. In a few cases, many sections were examined before the small foci of cartilage were revealed. The cartilage was composed of a homogenous matrix with extensions into the surrounding mesenchymal-type cells. Lacunae were present in the matrix and contained cells with regular, small, hyperchromatic nuclei, occasionally similar to the nuclei of the mesenchymal component, although usually comparable to other types of chondrosarcoma. Dysmorphic calcification was identified, but malignant osteoblasts or bone matrix was not seen. The mesenchymal cells were comparatively small and round to oval, with scant cytoplasm separating cells with prominent intercellular borders. In other areas the tumor cells were spindle-shaped, arranged in a storiform pattern (Fig. 6). The nuclei were hyperchromatic, with condensed chromatin seen at the periphery. Areas of myxoid degeneration (Fig. 6), hemorrhage, and necrosis were frequently identified, although these areas were not the dominant pattern. Osteoclast-like multinucleated giant cells were identified in three cases (Fig. 7), simulating a giant cell tumor. Mitotic figures were identified in all cases, although not increased in number (<2 per 10 high-power fields). Atypical forms were also noted.

Most of the cases were not classified correctly at initial consultation. Cases were diagnosed as hemangiopericytoma (n = 3), either benign or malignant, followed by embryonal rhabdomyosarcoma, fibrosarcoma, carcinoma ex-pleomorphic adenoma, fibrous histiocytoma, and lymphoma. Only five cases (38%) were correctly classified by the contributors.

Treatment and Follow-up

All patients were treated surgically with curettage (n = 1) or wide resection (n = 12). Wide resection included such procedures as lateral rhinotomy, maxillectomy, sphenoethmoidectomy, and orbital exenteration, with debulking of intracranial and middle cranial fossa tumor. Of the 11 patients in whom follow-up was available (two foreign patients were lost to follow-up), four patients had radiation therapy, whereas three patients had chemotherapy (Table II). Only one patient (currently alive; follow-up, 26.6 y) had triple combination therapy. Specific patients deserve greater clarification. Preoperative radiation therapy was administered to patient 3 because her tumor was initially considered unresectable. Limited tumor regression was achieved, and she subsequently underwent maxillectomy and orbital exenteration. Despite developing panhypopituitarism and dacryocystitis as a postoperative complication, she is currently alive and disease free (follow-up, 22 y). Patient 6 developed an axillary lymph node metastasis 14 years after nasal resection and postoperative irradiation. Despite axillary lymphadenectomy, she developed additional metastases over the ensuing years and eventually died of disease 23.8 years after her primary presentation. Patient 7 experienced two local recurrences 4 and 5 years, respectively, after initial treatment. She was treated with orbital exenteration in conjunction with chemotherapy and radiation therapy. She is currently alive and disease free (follow-up, 26.6 y). Patient 8 developed extensive local recurrence and was treated with wide local resection of the skull base including dura, orbit, and nasal cavity. The patient died of disease (survival, 1 y). Patient 10 developed local recurrence in her maxillary sinus, buccal region, and anterior skull base, which was treated with chemotherapy (Cytoxan, CCNU, Methotrexate). She died of her disease 1.8 years after presentation.

The overall mean survival for all patients was 12.1 years (median survival, 11.3 y). Of 6 patients who developed local recurrence 5 patients subsequently died of dis-
ease (mean survival, 6.5 y; median survival, 1.8 years), even though one patient developed two distant metastases and died 23.8 years after initial treatment. The remaining six patients are alive and disease free, with a mean survival of 17.3 years (median survival, 17.3 y). Two patients were lost to follow-up (Table II). These results yielded a disease-free 5-year survival rate of 64% and a disease-free 10-year survival rate of 55%.

DISCUSSION

Chondrosarcomas of the head and neck are rare, accounting for approximately 0.1% of all head and neck cancers.20 Chondrosarcoma may arise from any bone or soft tissue site, although fewer than 1% of these tumors are of extraskeletal origin.5 The histological diagnosis of chondrosarcoma was based on criteria for malignant cartilaginous tumors elsewhere in the body, first set forth by Lichtenstein and Jaffe,21 with tumor grading added at a later time.22 Chondrosarcomas are recognized by their increased cellularity, nuclear atypia including binucleation and multinucleation, and propensity to invade and destroy surrounding structures. Chondrosarcomas are divided into a number of subtypes, including myxoid, dedifferentiated, clear cell, and mesenchymal types. Mesenchymal chondrosarcoma makes up approximately 2% of all chondrosarcomas.2,3,20 In the present series and in other series, MCSNT makes up a small percentage (0.07%) of all benign and malignant primary sinonasal tract neoplasms, confirming the rare nature of this curious neoplasm.5

<table>
<thead>
<tr>
<th>Patient No.</th>
<th>Age (y)/Sex</th>
<th>Location (side); Size (cm)</th>
<th>Symptoms (duration in mo)</th>
<th>Treatment</th>
<th>Patient Outcome (y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11/F</td>
<td>Nasal cavity; N/R</td>
<td>Epistaxis, nasal obstruction (6)</td>
<td>Excision</td>
<td>LTF</td>
</tr>
<tr>
<td>2</td>
<td>15/F</td>
<td>Maxillary and ethmoid sinuses with erosion of cribriform plate (R); 5.0</td>
<td>Epistaxis, nasal obstruction (5)</td>
<td>Maxillectomy and skull base exenteration</td>
<td>A, NED (11.3)</td>
</tr>
<tr>
<td>3</td>
<td>23/F</td>
<td>Maxillary sinus and orbital floor (R); 9.0</td>
<td>Swelling and pain (4)</td>
<td>Preoperative radiation; wide excision with orbital exenteration</td>
<td>A, NED (22)</td>
</tr>
<tr>
<td>4</td>
<td>24/M</td>
<td>Nasal cavity (R); 3.4</td>
<td>Nasal obstruction, mass (8)</td>
<td>Preoperative chemotherapy; partial maxillectomy</td>
<td>A, NED (8.0)</td>
</tr>
<tr>
<td>5</td>
<td>24/M</td>
<td>Maxillary sinus (L); 4.2</td>
<td>Epistaxis (0.5)</td>
<td>Wide local excision</td>
<td>D, D (2.7)</td>
</tr>
<tr>
<td>6</td>
<td>24/F</td>
<td>Middle turbinate (L); 4.5</td>
<td>Epistaxis, nasal obstruction (8)</td>
<td>Subtotal maxillectomy; radiation (4300 rads)</td>
<td>D, D (23.8)</td>
</tr>
<tr>
<td>7</td>
<td>29/F</td>
<td>Maxillary, sphenoid and ethmoid sinuses (L); 4.1</td>
<td>Epistaxis and headache (1)</td>
<td>Partial maxillectomy, sphenoethmoidectomy; chemotherapy; radiation</td>
<td>A, NED (26.6)</td>
</tr>
<tr>
<td>8</td>
<td>30/M</td>
<td>Maxillary, ethmoid and sphenoid sinus (L); 5.0</td>
<td>Facial swelling (24)</td>
<td>Hemimaxillectomy</td>
<td>D, D (1.0)</td>
</tr>
<tr>
<td>9</td>
<td>36/F</td>
<td>Maxillary sinus (R); 3.8</td>
<td>Nasal obstruction, pain (2)</td>
<td>Excision</td>
<td>A, NED (23.2)</td>
</tr>
<tr>
<td>10</td>
<td>60/F</td>
<td>Maxillary and ethmoid sinuses (R); 3.2</td>
<td>Epistaxis, nasal obstruction (3)</td>
<td>Wide local excision; chemotherapy</td>
<td>D, D (1.8)</td>
</tr>
<tr>
<td>11</td>
<td>69/F</td>
<td>Ethmoid sinus (L); 8.0</td>
<td>Epistaxis, nasal obstruction (24)</td>
<td>Maxillectomy, orbital exenteration, and craniotomy; radiation</td>
<td>A, NED (12.7)</td>
</tr>
<tr>
<td>12</td>
<td>75/M</td>
<td>Nasal cavity and ethmoid sinus; N/R</td>
<td>N/R</td>
<td>Curettage</td>
<td>LTF</td>
</tr>
<tr>
<td>13</td>
<td>83/F</td>
<td>Nasal cavity, maxillary and ethmoid sinuses (L); 5.5</td>
<td>Nasal obstruction (N/R)</td>
<td>Excision</td>
<td>D, D (0.4)</td>
</tr>
</tbody>
</table>

N/R = not reported; D, D = dead with disseminated disease; A, NED = alive, no evidence of disease; LTF = lost to follow-up.

Mesenchymal chondrosarcoma of the sinonasal tract affects women twice as commonly as men and, in general, presents in the third and fourth decades of life (mean age at presentation, 34.8 y) (Table III). The age at initial presentation is indistinguishable from MC in other body

<table>
<thead>
<tr>
<th>Feature</th>
<th>No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of patients</td>
<td>18</td>
</tr>
<tr>
<td>Females</td>
<td>12</td>
</tr>
<tr>
<td>Males</td>
<td>6</td>
</tr>
<tr>
<td>Age at presentation</td>
<td></td>
</tr>
<tr>
<td>Mean age (y)</td>
<td>34.8</td>
</tr>
<tr>
<td>Median age (y)</td>
<td>26.5</td>
</tr>
<tr>
<td>Mean duration of symptoms (mo)</td>
<td>9.4</td>
</tr>
<tr>
<td>Mean tumor size (cm)</td>
<td>5.3</td>
</tr>
<tr>
<td>Patient outcome</td>
<td></td>
</tr>
<tr>
<td>Overall survival, mean (y)</td>
<td>9.9</td>
</tr>
<tr>
<td>Patients without evidence of disease (mean follow-up)</td>
<td>10 (12.7)</td>
</tr>
<tr>
<td>Patients who developed recurrences (mean follow-up)</td>
<td>6 (6.1)</td>
</tr>
<tr>
<td>Patients who developed metastases (mean follow-up)</td>
<td>4 (7.7)</td>
</tr>
<tr>
<td>Patients who died with disease (mean follow-up)</td>
<td>6 (5.6)</td>
</tr>
</tbody>
</table>
II).12,13,15 were performed in five of the patients in the present series.

The clustering of the tumor cells around patulous vessels is reminiscent of hemangiopericytoma, but the size and shape of the cells are not typical of a hemangiopericytoma. The hemangiopericytoma-like growth pattern was seen to some degree in each tumor, so we did not choose to separate tumors into the “hemangiopericytoma-like” and “small cell” types, especially since there does not appear to be any prognostic significance to such a separation.5,26 Sinonasal-type hemangiopericytoma does not contain areas of chondroid differentiation.

Although the pathological diagnosis is distinct and unique, it remains a significant challenge, as confirmed in the present clinical series. Only five tumors (38%) were accurately diagnosed on initial analysis by the contributing pathologists. Other small cell neoplasms such as lymphoma, Ewing sarcoma, embryonal rhabdomyosarcoma, synovial sarcoma, small cell osteosarcoma, and undifferentiated carcinoma may initially be confused with MC.2,6,18,23 However, the identification of chondroid matrix within the background mesenchyme clarifies the diagnosis. Giant cells are noted in a number of tumors, but it is the overall pattern and presence of cartilage that yield an accurate diagnosis. Although no immunophenotypic analysis was performed in the present clinical analysis, it is well known that MC is a primitive neoplasm which demonstrates polyphenotypic differentiation (S-100 protein, desmin, myoD1) that overlaps other small cell malignancies (Ewing sarcoma, small cell osteosarcoma, primitive neuroectodermal tumors).10,24 Therefore, given the unusual nature of the neoplasm, referral to a center with expertise in the diagnosis and management of the lesion is suggested.

Surgery is the primary treatment modality, although the specific procedure varies greatly in accordance with the specific location and extent of disease.2,4,6,9,23,29 Because of the complex anatomy of the sinonasal tract and the proximity of vital structures, it is difficult to achieve true oncological resection while maintaining cosmesis and preserving function. Specific details regarding management are incomplete, because of the nature of our referral service. However, surgery, often of a radical nature, was used in nearly all patients, with neoadjuvant or postoperative irradiation (n = 4) or combination radiation therapy and chemotherapy. Similar procedures were carried out for the patients reported in the literature.11–17 The overall role of multimodality treatment remains uncertain.4,6,9,10,23 Neoadjuvant radiation therapy was used in...
one patient in the present series, resulting in a decreased tumor size, a finding similar to a few case reports in the literature.7 When concomitant chemotherapy has been used for MC, there is, in general, no decrease in overall tumor size.14,27,30 Standardization of treatment of chondrosarcoma of the head and neck has been difficult because of recognized differences of biological behavior at varying anatomical sites.32 For example, intraspinal dural-based MC enjoys a more favorable prognosis suggested by earlier diagnosis and treatment precipitated by acute cord compression by small tumors still early in the growth cycle.10 Similarly, MCSNT may present relatively earlier in the disease course than NC of other anatomical sites and therefore benefits from earlier surgical treatment. Given the rarity of MCSNT, it may be of value to use radiotherapy and/or chemotherapy to achieve the best possible patient outcome.6,9

The clinical course is characterized by profound variability, irrespective of anatomical location. Patients may experience symptoms for weeks to years, have a propensity to develop recurrences from months to years after initial presentation, and die of their disease after a quiescent period of up to 25 years after initial presentation.4,6,9,10 Among our cohort, disease-free 5-year and 10-year survival rates were 64% and 55%, respectively, with an overall mean survival of 12.1 years. This suggests that if patients survive the first five years without the development of a recurrence, they are unlikely to die of their disease. This represents an difference vis-a`-vis the MC patients as a whole reported in the literature, where there was a raw 5-year survival of 35% to 60% and a raw 10-year survival of 20% to 40%.3–5,9,23 Jaw lesions have also been reported to have a better prognosis: 5-year and 10-year survival rates of 82% and 56%, respectively.8 Furthermore, in the sinonasal tract, 63% of patients survive without evidence of disease, suggesting earlier clinical detection of lesions in the head and neck in general.8,10–17

Mesenchymal chondrosarcoma may pursue a rapid clinical course and can metastasize in a high percentage of cases.5,9,9,23 When a recurrence occurs, it may occur in 38% of patients in the present series, it is a harbinger of a worse clinical outcome because nearly all of these patients ultimately died of their disease with metastatic tumors. When metastases occur, it is primarily through a hematogenous route, with the lungs being the most common secondary site of involvement.6,15,23 Adequate radical local control is necessary if metastatic disease is to be prevented.

CONCLUSION

Mesenchymal chondrosarcoma of the sinonasal tract is a highly malignant small cell tumor, which often presents with symptoms of nasal obstruction and epistaxis in young women. It is commonly misdiagnosed on pathological analysis, because of the dearth of cartilaginous matrix. Mesenchymal chondrosarcoma of the sinonasal tract appears less aggressive than MC of other anatomical sites, perhaps because of an earlier clinical presentation. Optimal treatment remains ablative surgical therapy, with a possible benefit from irradiation and chemotherapy. Diligent, close clinical surveillance is required because the clinical course may be protracted by delayed recurrence or metastasis. With aggressive initial therapy, more than 60% long-term patient survival is possible (mean survival, 9.9 y).

Acknowledgments

The authors thank Robert Weisman for inspiring an investigation into mesenchymal chondrosarcoma of the head and neck.

BIBLIOGRAPHY

1. Lichtenstein L, Bernstein D. Unusual benign and malignant chondroid tumors of bone: a survey of some mesenchymal cartilage tumors and malignant chondroblastic tumors, including a few multicentric ones, as well as many atypical benign chondroblastosomas and chondromyxoid fibromas. Cancer 1959;12:1142–1157.

